

Scalable Systems Software for Terascale Computer Centers

Al Geist
Oak Ridge National Lab

SciDAC PI Meeting March 10, 2003

Scalable Systems Software for Terascale Computer Centers

Coordinator: Al Geist

Participating Organizations

Includes DOE Labs, NSF Supercomputer Centers, Vendors

ORNL Ames NCSA Cray

ANL SNL SDSC Intel

LBNL LANL IBM Unlimited Scale

PNNL PSC Open to all like MPI forum

Clemson

www.scidac.org/ScalableSystems

The Problem Today

System administrators and managers of terascale computer centers are facing a crisis:

Three Goals

Collectively (with industry) agree on and specify standardized interfaces between system components

MPI-like process to promote interoperability, portability, and long-term usability.

Produce a fully integrated suite of systems software and tools

Reference Implementation for the management and utilization of terascale computational resources.

Research and development of more advanced versions of the components

To support the scalability, fault tolerance, and performance requirements of large science applications. Up to 10,000 nodes.

Scope of the Effort

Impact

Fundamentally change the way future high-end systems software is developed and distributed

Reduced facility management costs

- reduce need to support ad hoc software
- better systems tools available
- able to get machines up and running faster and keep running

More effective use of machines by scientific applications

- scalable launch of jobs and checkpoint/restart
- job monitoring and management tools
- allocation management interface

System Software Architecture

Project Management

Quarterly Face-to Face Meetings

To discuss and vote on interface proposals

- 1. Node build, configuration, and information service
- 2. Resource management, scheduling, and allocation
- 3. Proccess management, system monitoring, and checkpointing
- 4. Validation and Integration

Web-based Project Notebooks (over 200 pages and growing)

A main notebook for general information & mtg notes And individual notebooks for each working group

www.scidac.org/ScalableSystems

Working Group

System Software Components Presently under construction

Strong Emphasis on multi-lab cooperation and team effort

Build & Configure Process Mgmt
Working Group Working Group

Progress on Integrated Suite

To Learn More – Five Project Notebooks

A main notebook for general information

And individual notebooks for each working group

- Allows groups to keep track of other groups progress and comment on the items of overlap
- Allows Center members and interested parties to see what is being defined and implemented

Poster Session

Get to all notebooks through main web site www.scidac.org/ScalableSystems

Click on side bar or at "project notebooks" at bottom of page